Rutgers University: Algebra Written Qualifying Exam August 2014: Problem 4 Solution

Exercise. Let $\psi = \mathbb{R}$. Show that the forms $x_1 x_2$ and $2x_1 = 2x_2$ on ψ are equivalent. Solution. Let $\psi(x_1, x_2) = 2x_1^2 - 2x_2^2$ and $\phi(x_1, x_2) = x_1x_2$ ψ and ϕ are equivalent $\iff \exists M \in GL(2, \mathbb{R})$ s.t. $\psi(x_1, x_2) = \phi\left(M \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right)$ $\psi(x_1, x_2) = 2x_1^2 - 2x_2^2$ $= 2(x_1 - x_2)(x_1 + x_2)$ $= \phi(2x_1 - 2x_2, x_1 + x_2)$ $= \phi\left(\begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right)$ Thus, x_1x_2 and $2x_1^2 - 2x_2^2$ are equivalent