Rutgers University: Algebra Written Qualifying Exam

August 2014: Problem 4 Solution

Exercise. Let $V=\mathbb{R}^{2}$. Show that the forms $x_{1} x_{2}$ and $2 x_{1}^{2}-2 x_{2}^{2}$ on V are equivalent.

Let $\quad \psi\left(x_{1}, x_{2}\right)=2 x_{1}^{2}-2 x_{2}^{2} \quad$ and $\quad \phi\left(x_{1}, x_{2}\right)=x_{1} x_{2}$
ψ and ϕ are equivalent $\Longleftrightarrow \exists M \in G L(2, \mathbb{R})$ s.t. $\psi\left(x_{1}, x_{2}\right)=\phi\left(M\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)$

$$
\begin{aligned}
\psi\left(x_{1}, x_{2}\right) & =2 x_{1}^{2}-2 x_{2}^{2} \\
& =2\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right) \\
& =\phi\left(2 x_{1}-2 x_{2}, x_{1}+x_{2}\right) \\
& =\phi\left(\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
\end{aligned}
$$

Thus, $x_{1} x_{2}$ and $2 x_{1}^{2}-2 x_{2}^{2}$ are equivalent

